skip to main content


Search for: All records

Creators/Authors contains: "Sun, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A primary design objective for Data-intensive User- facing (DU) services for cloud and edge computing is to maximize query throughput, while meeting query tail latency Service Level Objectives (SLOs) for individual queries. Unfortunately, the existing solutions fall short of achieving this design objective, which we argue, is largely attributed to the fact that they fail to take the query fanout explicitly into account. In this paper, we propose TailGuard based on a Tail-latency-SLO-and- Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ) for task queuing at individual task servers the query tasks are fanned out to. With the task queuing deadline for each task being derived based on both query tail latency SLO and query fanout, TailGuard takes an important first step towards achieving the design objective. TailGuard is evaluated against First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by simulation. It is driven by three types of applications in the Tailbench benchmark suite. The results demonstrate that TailGuard can improve resource utilization by up to 80%, while meeting the targeted tail latency SLOs, as compared with the other three policies. TailGuard is also implemented and tested in a highly heterogeneous Sensing-as-a-Service (SaS) testbed for a data sensing service, with test results in line with the other ones. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    In recent years, concerns have been raised regarding the contamination of grapes with pesticide residues. As consumer demand for safer food products grows, regular monitoring of pesticide residues in food has become essential. This study sought to develop a rapid and sensitive technique for detecting two specific pesticides (phosmet and paraquat) present on the grape surface using the surface‐enhanced Raman spectroscopy (SERS) method. Gold nanostars (AuNS) particles were synthesized, featuring spiky tips that act as hot spots for localized surface plasmon resonance, thereby enhancing Raman signals. Additionally, the roughened surface of AuNS increases the surface area, resulting in improved interactions between the substrate and analyte molecules. Prominent Raman peaks of mixed contaminants were acquired and used to characterize and quantify the pesticides. It was observed that the SERS intensity of the Raman peaks changed in proportion to the concentration ratio of phosmet and paraquat. Moreover, AuNS exhibited superior SERS enhancement compared to gold nanoparticles. The results demonstrate that the lowest detectable concentration for both pesticides on grape surfaces is 0.5 mg/kg. These findings suggest that SERS coupled with AuNS constitutes a practical and promising approach for detecting and quantifying trace contaminants in food.

    Practical Application

    This research established a novel surface‐enhanced Raman spectroscopy (SERS) method coupled with a simplified extraction protocol and gold nanostar substrates to detect trace levels of pesticides in fresh produce. The detection limits meet the maximum residue limits set by the EPA. This substrate has great potential for rapid measurements of chemical contaminants in foods.

     
    more » « less
  3. null (Ed.)